Sourin Dey

• 2002 Greene Street ■ sourin@email.sc.edu • 3077613781 ♠ Github in Link
--

Projects

08/2021 - 12/2021	Benchmarking Graph Neural Network (GNN) architectures for material property prediction.
	 Investigated the impact of node level featurization in rotationally equivariant and atomistic line graph neural networks for material property prediction. Conducted a benchmark study to analyze the impact of different message passing blocks to solve oversmoothing problems in graph neural networks.
01/2023 - 05/2023	 Benchmarking Deep Neural and Spiking Neural Network Performances in Edge devices and Neuromorphic devices Becnhmarked DNN latency, throughput in Intel Movidius Neural Computing Stick edge device. This helps to identify and deploy efficient neural network models for real time applications. Converted object detection based CNN models to Spiking Neural Networks (SNN).
08/2022 - 12/2022	 Solar Cell based Chemical Synthesis Information Extraction by Fine-tuning Transformer Model Trained on Chemical Data I have designed a NLP pipeline using language model Bio-BERT and Spacy that summarizes solar cell chemical synthesis information from a given paragraph.
08/2022 – present	 Calibrating design choices for halide perovskite solar cells using interpretable machine learning Integrated a novel algorithm into Generalized Additive Model that predicts continuous target within a desired range. Identified important patterns of experimental parameters that influence Power Conversion Efficiency of perovskite solar cells using interpretable machine learning model.
Education	
08/2021 – present	Ph.D. in Computer Science University of South Carolina Selected Coursework: Computer Processing of Natural Language, Neuromorphic Computing, Data Mining.
08/2019 - 12/2021	MS in Computer Science University of Wyoming Selected Coursework: Intro to AI, Randomness in Computation, Deep Reinforcement Learning.

Skills

05/2014 - 05/2018

Khulna, Bangladesh

• Python (PyTorch, Pytorch-Geometric, Tensorflow, Deep Graph Library, GenSim, SpaCy), Openvino, Shell scripting, C++

B.Sc. in Electrical and Electronic Engineering

Khulna University of Engineering & Technology

- SQL, Jupyter Notebook, VS Code, Github, High-Performance Computing.
- Algorithm & Data Structure coding in Leetcode

Research Experience

08/2021 – present	 Graduate Research Assistant Sutton Lab & MLEG Lab, University of South Carolina ☑ I developed an Atomistic Line Graph Neural Network based model to learn electronic structure of crystals for predicting eigenvalue, a critically important opto-electric property. This model significantly outpaces the conventional DFT method, which is known for its high computational costs I am currently working to develop a graph neural network based contrastive-learning model that will help to find similar crystal structures from all available structures in material projects. I used Crystal Graph Convolution for message passing generates the embedding for contrastive model. This project will greatly narrow down search space for material/drug discovery on specific application.
08/2019 - 12/2021	Graduate Research Assistant

Artificially Intelligent Manufacturing Center, University of Wyoming 🗵

• I automated the AI powered Laser-Induced Graphene Process(LIG) manufacturing using Bayesian Optimization. The automated system is generalized and can be deployed to manufacture other materials.

Publications

My Google Scholar profile 🗷

Extracurriculars